The present study deals with the response of a forced nonlinear Mathieu equation. The equation considered has parametric excitation at the same frequency as direct forcing and also has cubic nonlinearity and damping. A second-order perturbation analysis using the method of multiple scales unfolds numerous resonance cases and system behavior that were not uncovered using first-order expansions. All resonance cases are analyzed. We numerically plot the frequency response of the system. The existence of a superharmonic resonance at one third the natural frequency was uncovered analytically for linear system. (This had been seen previously in numerical simulations but was not captured in the first-order expansion.) The effect of different parameters on the response of the system previously investigated are revisited.

This content is only available via PDF.
You do not currently have access to this content.