The torsion stiffness of an automotive chassis can be determined using an analytical approach based purely on geometry, using an experimental method, or alternatively by employing a Finite Element Analysis (FEA) process. These three methods are suitable at different design stages and combined together could prove to be practical methods of determining the torsion stiffness of a chassis. This paper describes and compares two distinct FEA processes to determine the torsion stiffness of an automotive chassis during the detailed design stage. The first process iteratively applies forces to the model and records displacements, while the second process gradually applies vertical displacements in place of force to determine the torsional stiffness threshold. Each method is explained and supported with a case study to provide a basis of comparison of the results.

This content is only available via PDF.
You do not currently have access to this content.