The market segment of hybrid-electric and full function electric vehicles is growing within the automotive transportation sector. While many papers exist concerning fuel economy or fuel consumption and the limitations of conventional powertrains, little published work is available for vehicles which use grid electricity as an energy source for propulsion. Generally, the emphasis is put solely on the average drive cycle efficiency for the vehicle with very little thought given to propelling and braking powertrain losses for individual components. The modeling section of this paper will take basic energy loss equations for vehicle speed and acceleration, along with component efficiency information to predict the grid energy consumption in AC Wh/km for a given drive cycle. An electric-only range target is established as part of the vehicle technical specifications. This set range along with component characteristics will impact the sizing of the energy storage subsystem. To demonstrate the usefulness in understanding powertrain losses, the energy use is described in propelling, braking, idle, and charging cases. A simulation focusing on battery sizing to meet power and range requirements shows the impacts of friction brakes, regenerative braking fraction, and average motor efficiency. Vehicle characteristics such as, but not limited to, a range extender application, electric-only vehicle range, and acceleration performance are explained as well. The model is correlated to real world vehicle data for a custom-built plug-in hybrid electric vehicle. By using the Virginia Tech Range Extended Crossover (VTREX) and collecting data from testing, the parameters that the model is based on will be correlated with real world test data. The paper presents a propelling, braking, and net energy weighted drive cycle averaged efficiency that can be used to calculate the losses for a given cycle. In understanding the losses at each component, not just the individual efficiency, areas for future vehicle improvement can be identified to reduce petroleum energy use and greenhouse gases.

This content is only available via PDF.
You do not currently have access to this content.