Lead Zirconate Titanate (PbZrxTi1−xO3 or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. One major challenge encountered is accurate measurement of piezoelectric coefficients of PZT thin films. In this paper, we present a simple, low-cost, and effective method to measure piezoelectric coefficient d33 of PZT thin films through use of basic principles in mechanics of vibration. We use a small impact hammer with a tiny tip to generate an impulsive force acting perpendicularly to the surface of a PZT film. In the meantime, we measure the impulsive force via a load cell and the responding charge of the PZT thin film via a charge amplifier. Then the piezoelectric coefficient d33 is obtained from the measured force and charge based on piezoelectricity and a finite element modeling. We also conduct a thorough parametric study to understand the sensitivity of this method on various parameters, such as substrate material, boundary conditions, specimen size, specimen thickness, thickness ratio, and PZT thin-film material. To demonstrate the feasibility, we calibrate the new method via a PZT thick film disk resonator with a known d33. Experimental results show that d33 measured via this method is as accurate as those from the manufacturer’s specifications within its tolerance. We then apply the new method to PZT thin films deposited on silicon substrate, and successfully measure the corresponding piezoelectric coefficient d33.

This content is only available via PDF.
You do not currently have access to this content.