Micro-scale slender swimmers are frequently encountered in nature and recently in micro-robotic applications. The swimming mechanism examined in this article is based on small transverse axi-symmetrical travelling wave deformations of a cylindrical long shell. In very small scale, inertia forces become negligible and viscous forces dominate most propulsion mechanisms being used by micro-organisms and robotic devices. The present paper proposes a compact design principle that provides efficient power to propel and maneuver a micro-scale device. Shown in this paper is a numerical analysis which couples the MEMS structure to the surrounding fluid. Analytical results compare the proposed mechanism to commonly found tail (flagella) driven devices, and a parametric comparison is shown suggesting it has superior performance. Numerical studies are preformed to verify the analytical model. Finally, a macro-scale demonstrator swimming in an environment with similar Reynolds numbers to the ones found in small scale is shown and its behavior in the laboratory is compared to the theory.

This content is only available via PDF.
You do not currently have access to this content.