In this paper, we present a synthesis procedure for the coupler link of a planar slider-crank linkage in order to coordinate input by a linear actuator with the rotation of an output crank. This problem can be formulated in a manner similar to the synthesis of a five position RR coupler link. It is well-known that the resulting equations can produce branching solutions that are not useful. This is addressed by introducing tolerances for the input and output values of the specified task function. The proposed synthesis procedure is then executed on two examples. In the first example, a survey of solutions for tolerance zones of increasing size is conducted. In this example we find that a tolerance zone of 5% of the desired full range results in a number of useful task functions and usable slider-crank function generators. To demonstrate the use of these results, we present an example design for the actuator of the shovel of a front-end loader.

This content is only available via PDF.
You do not currently have access to this content.