The development of safe, energy efficient mechatronic systems is currently changing standard paradigms in the design and control of industrial manipulators. In particular, most optimization strategies require the improvement or the substitution of different system components. On the other hand, from an industry point of view, it would be desirable to develop energy saving methods applicable also to established manufacturing systems being liable of small possibilities for adjustments. Within this scenario, an engineering method is reported for optimizing the energy consumption of serial manipulators for a given operation. An object-oriented modeling technique, based on bond graph, is used to derive the robot electromechanical dynamics. The system power flow is then highlighted and parameterized as a function of the total execution times. Finally, a case study is reported showing the possibility to reduce the operation energy consumption when allowed by scheduling or manufacturing constraints.

This content is only available via PDF.
You do not currently have access to this content.