During the process of trade space exploration, information overload has become a notable problem. To find the best design, designers need more efficient tools to analyze the data, explore possible hidden patterns, and identify preferable solutions. When dealing with large-scale, multi-dimensional, continuous data sets (e.g., design alternatives and potential solutions), designers can be easily overwhelmed by the volume and complexity of the data. Traditional information visualization tools have some limits to support the analysis and knowledge exploration of such data, largely because they usually emphasize the visual presentation of and user interaction with data sets, and lack the capacity to identify hidden data patterns that are critical to in-depth analysis. There is a need for the integration of user-centered visualization designs and data-oriented data analysis algorithms in support of complex data analysis. In this paper, we present a work-centered approach to support visual analytics of multi-dimensional engineering design data by combining visualization, user interaction, and computational algorithms. We describe a system, Learning-based Interactive Visualization for Engineering design (LIVE), that allows designer to interactively examine large design input data and performance output data analysis simultaneously through visualization. We expect that our approach can help designers analyze complex design data more efficiently and effectively. We report our preliminary evaluation on the use of our system in analyzing a design problem related to aircraft wing sizing.

This content is only available via PDF.
You do not currently have access to this content.