The development of large scale wind farms that can produce energy at a cost comparable to that of other conventional energy resources presents significant challenges to today’s wind energy industry. The consideration of the key design and environmental factors that influence the performance of a wind farm is a crucial part of the solution to this challenge. In this paper, we develop a methodology to account for the configuration of the farm land (length-to-breadth ratio and North-South-East-West orientation) within the scope of wind farm optimization. This approach appropriately captures the correlation between the (i) land configuration, (ii) the farm layout, and (iii) the selection of turbines-types. Simultaneous optimization of the farm layout and turbine selection is performed to minimize the Cost of Energy (COE), for a set of sample land configurations. The optimized COE and farm efficiency are then represented as functions of the land aspect ratio and the land orientation. To this end, we apply a recently developed response surface method known as the Reliability-Based Hybrid Functions. The overall wind farm design methodology is applied to design a 25MW farm in North Dakota. This case study provides helpful insights into the influence of the land configuration on the optimum farm performance that can be obtained for a particular site.

This content is only available via PDF.
You do not currently have access to this content.