Solar tower with heliostat mirrors is one of the established setups for utility-scale solar energy harvesting. Advantages of the setup include the capability to reach high temperature, modularity and ease of maintenance for the heliostats, containment of the high temperature zone atop the tower, as well as overall low cost per unit energy. However, downscaling to medium or small scale applications often does not turn out economically feasible with flat mirror heliostats that are the norm in utility-scale systems. This is mainly due to the need to preserve the solar concentration ratio, which in turn means the number of flat mirrors cannot be reduced. Use of parabolic mirrors instead can significantly reduce the required number of mirrors for smaller scale systems, but comes with new challenges. Unlike flat mirrors that have infinite effective focal length, the effective focal length of parabolic mirrors changes with the angle of incidence, which in turn, changes throughout the day and season. The design challenge tackled in this paper is that of optimal selection of the focal lengths of the heliostats in order to maximize the yearly harvested energy while maintaining the concentration ratio within desirable limits. A parameterized system model is developed and a genetic algorithm is implemented for the optimization task. The model is then applied to a demonstration case study of a 10 kW solar concentrator. Results of the study demonstrate the proposed design approach as well as show the promise for effective downscaling of tower and heliostat systems.
Skip Nav Destination
Close
Sign In or Register for Account
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 28–31, 2011
Washington, DC, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
978-0-7918-5482-2
PROCEEDINGS PAPER
Optimization of Parabolic Heliostat Focal Lengths in a Mini-Tower Solar Concentrator System
Karim Hamza,
Karim Hamza
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Umesh Gandhi,
Umesh Gandhi
Toyota Research Institute - North America, Ann Arbor, MI
Search for other works by this author on:
Kazuhiro Saitou
Kazuhiro Saitou
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Karim Hamza
University of Michigan, Ann Arbor, MI
Umesh Gandhi
Toyota Research Institute - North America, Ann Arbor, MI
Kazuhiro Saitou
University of Michigan, Ann Arbor, MI
Paper No:
DETC2011-48591, pp. 359-366; 8 pages
Published Online:
June 12, 2012
Citation
Hamza, K, Gandhi, U, & Saitou, K. "Optimization of Parabolic Heliostat Focal Lengths in a Mini-Tower Solar Concentrator System." Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 37th Design Automation Conference, Parts A and B. Washington, DC, USA. August 28–31, 2011. pp. 359-366. ASME. https://doi.org/10.1115/DETC2011-48591
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
4
Views
0
Citations
Related Proceedings Papers
Related Articles
A New Troughlike Nonimaging Solar Concentrator
J. Sol. Energy Eng (February,2002)
Low-Cost Inflatable Heliostat for Solar Thermal Powerplants
J. Sol. Energy Eng (August,2002)
Truncation of the Secondary Concentrator (CPC) as Means to Cost Effective Beam-Down System
J. Sol. Energy Eng (August,2010)
Related Chapters
Development of a Two-Stage Solar Concentrator Using Fresnel Lens and Dish Reflector
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Overview of Section XI Stipulations
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Third Edition
Iwe and Iwl
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Third Edition