This paper examines the limitations of using B-spline representation as an analysis tool by comparing its geometry with the nonlinear finite element absolute nodal coordinate formulation (ANCF) geometry. It is shown that while both B-spline and ANCF geometries can be used to model non-structural discontinuities using linear connectivity conditions, there are fundamental differences between B-spline and ANCF geometries. First, while B-spline geometry can always be converted to ANCF geometry, the converse is not true; that is, ANCF geometry cannot always be converted to B-spline geometry. Second, because of the rigid structure of the B-spline recurrence formula, there are restrictions on the order of the parameters and basis functions used in the polynomial interpolation; this in turn can lead to models that have significantly larger number of degrees of freedom as compared to those obtained using ANCF geometry. Third, in addition to the known fact that B-spline does not allow for straight forward modeling of T-junctions, B-spline representation cannot be used in a straight forward manner to model structural discontinuities. It is shown in this investigation that ANCF geometric description can be used to develop new spatial chain models governed by linear connectivity conditions which can be applied at a preprocessing stage allowing for an efficient elimination of the dependent variables. The modes of the deformations at the definition points of the joints that allow for rigid body rotations between ANCF finite elements are discussed. The use of the linear connectivity conditions with ANCF spatial finite elements leads to a constant inertia matrix and zero Coriolis and centrifugal forces. The fully parameterized structural ANCF finite elements used in this study allow for the deformation of the cross section and capture the coupling between this deformation and the stretch and bending. A new chain model that employs different degrees of continuity for different coordinates at the joint definition points is developed in this investigation. In the case of cubic polynomial approximation, C1 continuity conditions are used for the coordinate line along the joint axis; while C0 continuity conditions are used for the other coordinate lines. This allows for having arbitrary large rigid body rotation about the axis of the joint that connects two flexible links. Numerical examples are presented in order to demonstrate the use of the formulations developed in this paper.
Skip Nav Destination
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 28–31, 2011
Washington, DC, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
978-0-7918-5481-5
PROCEEDINGS PAPER
Limitations of B-Spline Geometry in the Finite Element/Multibody System Analysis Available to Purchase
Ahmed A. Shabana,
Ahmed A. Shabana
University of Illinois at Chicago, Chicago, IL
Search for other works by this author on:
Ashraf M. Hamed,
Ashraf M. Hamed
University of Illinois at Chicago, Chicago, IL
Search for other works by this author on:
Abdel-Nasser A. Mohamed,
Abdel-Nasser A. Mohamed
University of Illinois at Chicago, Chicago, IL
Search for other works by this author on:
Paramsothy Jayakumar,
Paramsothy Jayakumar
U.S. Army RDECOM-TARDEC, Warren, MI
Search for other works by this author on:
Michael D. Letherwood
Michael D. Letherwood
U.S. Army RDECOM-TARDEC, Warren, MI
Search for other works by this author on:
Ahmed A. Shabana
University of Illinois at Chicago, Chicago, IL
Ashraf M. Hamed
University of Illinois at Chicago, Chicago, IL
Abdel-Nasser A. Mohamed
University of Illinois at Chicago, Chicago, IL
Paramsothy Jayakumar
U.S. Army RDECOM-TARDEC, Warren, MI
Michael D. Letherwood
U.S. Army RDECOM-TARDEC, Warren, MI
Paper No:
DETC2011-47168, pp. 861-871; 11 pages
Published Online:
June 12, 2012
Citation
Shabana, AA, Hamed, AM, Mohamed, AA, Jayakumar, P, & Letherwood, MD. "Limitations of B-Spline Geometry in the Finite Element/Multibody System Analysis." Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B. Washington, DC, USA. August 28–31, 2011. pp. 861-871. ASME. https://doi.org/10.1115/DETC2011-47168
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry
J. Comput. Nonlinear Dynam (January,2012)
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
J. Comput. Nonlinear Dynam (August,2022)
Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations
J. Comput. Nonlinear Dynam (October,2010)
Related Chapters
Surrogate Modeling with Non-Uniform Rational B-splines
Advances in Computers and Information in Engineering Research, Volume 1
Automatic Knot Adjustment for B-Spline Surface Approximation
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
3D Frame Structural Analysis Based on Imported Geometry at Preprocessing
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)