This study investigates the dynamics of planetary gears where nonlinearity is induced by bearing clearance. Lumped-parameter and finite element models of planetary gears with bearing clearance, tooth separation, and gear mesh stiffness variation are developed. The harmonic balance method with arc-length continuation is used to obtain the dynamic response of the lumped-parameter model. Solution stability is analyzed using Floquet theory. Rich nonlinear behavior is exhibited in the dynamic response, consisting of nonlinear jumps and a hardening effect induced by the transition from no bearing contact to contact. The bearings of the central members (sun, ring, and carrier) impact against the bearing races near resonance, which leads to coexisting solutions in wide speed ranges, grazing bifurcation, and chaos. Secondary Hopf bifurcation is the route to chaos. Input torque can significantly suppress the nonlinear effects caused by bearing clearance.

This content is only available via PDF.
You do not currently have access to this content.