The present paper describes a design of speed control system of the water driven stage that has been developed for a feed table of an ultra-precision machine tool. The stage has a piston-cylinder mechanism to drive a table of the stage. Since the piston-cylinder mechanism is used, the flow rate supplied to the piston-cylinder controls the speed of the table. For diamond turning applications, the constant feed motion of the stage is highly desirable in order for obtaining fine diamond-turned surfaces. In the present paper, mathematical models of the water driven stage and a flow control valve are introduced. Based on the derived models, a conventional P-I control system is then designed in order to achieve desired control performances, aiming no steady-state error and minimized extraneous disturbance effects on the response. Performances of the designed controller are studied through experiments and simulations.

This content is only available via PDF.
You do not currently have access to this content.