This paper addresses the critical issue of establishing and maintaining desired wireless communication connectivity in a team of collaborative mobile robots, which is highly demanded for reliable functioning of multi-robot systems but challenging in realistic environments. The signal propagation of wireless communications among mobile robots is affected by not only the transmission power and distance but also obstacles and other environmental conditions as well as robot movement, which result in signal loss, attenuation, multi-path fading and shadowing. Consequently, the communication condition among mobile robots in a physical environment is usually unstable, and it is difficult to accurately predict the actual communication ranges of robots. We propose a decentralized control strategy which, based on perceived link quality, adopts fuzzy control to accommodate the fluctuating communication condition, and approach and maintain desired and reliable communication connections among neighboring robots. The effectiveness of the proposed scheme has been verified in several simulated environments with different signal propagation conditions based on a probabilistic signal propagation model.

This content is only available via PDF.
You do not currently have access to this content.