Self-reconfigurable modular robot consists of many identical modules. By changing the connections among modules, the structure of the robot can flexibly change into many other structures. First, the module is designed which can finish the self-repairing action and its disconnection/connection mechanism is analyzed. Second, a distributed self-repairing process based on the geometrical characters of the modular robot is presented. The method of the Breadth-First-Search and the Depth-First-Search is applied to look for a locomotion path by which a faulty module is ejected and replaced by a spare module. The method can be used to show the self-repairing task of most lattice-type modular robots. It’s effective to solve large numbers of computing problems when the faulty module is inside a large-scale system. At last, a simulation of (2 × 4 + 1)3 modules shows the feasibility and effectiveness of the self-repairing method in the self-reconfigurable robot.

This content is only available via PDF.
You do not currently have access to this content.