The runner system in injection molding process is used to supply the polymer melt from injection nozzle to the gates of final part cavities. Realizing complex multi-material mechanisms by in-mold assembly process requires special runner layout design considerations due to the existence of the first stage components. This paper presents the development of an optimization approach for runner systems in the in-mold assembly of multi-material compliant mechanisms. First, the issues specific to the in-mold assembly process are identified and analyzed. Second, the general optimization problem is formulated by identification of all parameters, design variables, objective functions and constraints. Third, the implementation of the optimization problem in Matlab® environment is described based on a case study of a runner system for an in-mold assembly of a MAV drive mechanism. This multi-material compliant mechanism consists of seven rigid links interconnected by six compliant hinges. Finally, several optimization approaches are analyzed to study their performance in solving the formulated problem. The most appropriate optimization approach is selected. The case study showed the applicability of the developed optimization approach to runner systems for complex in-mold assembled multi-material mechanism designs.

This content is only available via PDF.
You do not currently have access to this content.