In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to multidimensional loading paths and can automate the acquisition of data representing the excitation and response behavior of the specimens involved. Material characterization is achieved by minimizing the difference between experimentally measured and analytically computed system responses as described by strain fields and surface strain energy densities. A one dimensional model is presented first to elucidate the design optimization for the general non-linear constitutive response. Small and large strain formulations based on strain energy density decompositions are developed and utilized for determining the constitutive behavior of composite materials. Examples based on both synthetic and actual data demonstrate the successful application of design optimization for constitutive characterization.

This content is only available via PDF.
You do not currently have access to this content.