The goal of this work is to develop a systematic method for optimizing the structural design of a segmented wheel concept to improve its operating performance. In this study, a wheel concept is parameterized into a set of size and shape design variables, and a finite element model of the wheel component is created. A multi-objective optimization problem is formulated to optimize its directional compliance and reduce stress concentrations, which has a direct affect on the efficiency, traction, rider comfort, maneuverability, and reliability of the wheel. To solve the optimization problem, a Matlab-FE simulation loop is built and a multi-objective genetic algorithm is used to find the Pareto front of optimal solutions. A trade-off design is selected which demonstrates an improvement from the original concept. Finally, recommendations will be made to apply the structural optimization framework to alternative wheel conceptual designs.

This content is only available via PDF.
You do not currently have access to this content.