Several recent reports and workshops have identified integrated computational engineering as an emerging technology with the potential to transform engineering design. The goal is to integrate geometric models, analyses, simulations, optimization and decision-making tools, and all other aspects of the engineering process into a shared, interactive computer-generated environment that facilitates multidisciplinary and collaborative engineering. While integrated computational engineering environments can be constructed from scratch with high-level programming languages, the complexity of these proposed environments makes this type of approach prohibitively slow and expensive. Rather, a high-level software framework is needed to provide the user with the capability to construct an application in an intuitive manner using existing models and engineering tools with minimal programming. In this paper, we present an exploratory open source software framework that can be used to integrate the geometric models, computational fluid dynamics (CFD), and optimization tools needed for shape optimization of complex systems. This framework is demonstrated using the multiphase flow analysis of a complete coal transport system for an 800 MW pulverized coal power station. The framework uses engineering objects and three-dimensional visualization to enable the user to interactively design and optimize the performance of the coal transport system.

This content is only available via PDF.
You do not currently have access to this content.