More and more areas in research and development use Virtual Reality technologies. To quickly realize new applications at low costs, the reuse of existing functionality is of high importance. In the area of mobile robotics, physics based simulation components promise optimal reusability: The physical laws always stay the same and do not depend on the application. Hence, as long as the applications try to emulate reality, physics based simulation software will be reusable. Unfortunately, depending on the kind of application, different simulation models for different physical domains are needed: Particle models for fluids and soil, finite-elements for non-rigid bodies, multi-body systems and so on. However, for those applications developed at Institute for Man-Machine Interaction at the RWTH Aachen University, a multi-body dynamics component has taken a central role in the process of application development. It is fully integrated within a modern 3D-simulation and visualization tool. It is enhanced by generalized tools of contact graph analysis, which support the fast development of robust applications suitable for daily use. The paper discusses the benefit of this multi-body system as a platform for versatile application development, taking the following three applications as examples: The first example is the development of forest machine simulators for usage in education and training of machine operators. The existence of a purely kinematically realized, phenomenological implementation with widely equivalent range of functions allows a direct comparison of the programming efforts. The second example is the development of algorithms for space robot motion planning. The example demonstrates, how easy and effective innovative robotic simulation applications can be realized using a common, dynamics based simulation framework. The third example finally describes the development of a Virtual Testbed for legged lunar exploration robots. The Virtual Testbed example handles in detail the concept of “top-down-development” of simulation models. The refinement of the simulation of foot-soil-contact situations using a force exchange interface and the refinement of the actuator dynamics simulation using an energy exchange interface serve as examples.

This content is only available via PDF.
You do not currently have access to this content.