This paper describes an analytical and experimental investigation of the transient dynamics of centrifugal pendulum vibration absorbers, which are used for reducing torsional vibrations in rotating machines. Recently these absorbers have been proposed for use in automotive engines, to aid with fuel saving technologies such as cylinder deactivation and torque converter lockup. In order for them to operate effectively with minimal mass, they must be designed to allow for large amplitude, nonlinear responses. In this paper we consider the transient dynamics of these absorbers, focusing on the response during startup. During these transient events the absorbers experience a beating type motion, resulting in overshoot of the absorber response before reaching steady state conditions. Using a perturbation analysis of the system equations of motion, an approximate analytical expression for nonlinear overshoot is derived, relating the overshoot to the system and excitation parameters. These predictive results are derived for a general class of absorbers, and are verified by simulations of the full equations of motion and by experiments using a fully instrumented spin rig. It is found that the overshoot for absorbers with softening nonlinearity, such as circular path absorbers, can be well over the 100% upper limit for a linear absorber, and can be as high as 173%. For absorbers with tautochronic paths, the overshoot remains quite close to that of the linearized system, even for large amplitudes. These results provide a useful tool for the design of absorbers to meet transient response specifications.

This content is only available via PDF.
You do not currently have access to this content.