In this paper, the coordinated control of a flexible space manipulator system with a front flexible link is discussed. With the assumed mode method and linear momentum conservation of the system, the dynamics of the manpulator is derived in Lagrangian formulation. By using the augmentation approach, a robust control scheme for the coordinated motion between the spacecraft’s attitude and arm’s joints of the flexible space manipulator with bounded external disturbances and uncertain parameters to track the desired trajectories in joint space is proposed. It is designed based on a priori knowledge about the uncertainty-bound and possesses the advantage that it can greatly reduce the calculation time needed by the adaptive or neural network control schemes. Simulation results show that the presented controller can stabilize the system to track the desired trajectories and keep the vibration amplitude of the flexible arm to be relatively low-level.

This content is only available via PDF.
You do not currently have access to this content.