In this paper, a design-stage failure identification framework is proposed using a modeling and simulation approach based on Dimensional Analysis and qualitative physics. The proposed framework is intended to provide a new approach to model the behavior in the Functional-Failure Identification and Propagation (FFIP) framework, which estimates potential faults and their propagation paths under critical event scenarios. The initial FFIP framework is based on combining hierarchical system models of functionality and configuration, with behavioral simulation and qualitative reasoning. This paper proposes to develop a behavioral model derived from information available at the configuration level. Specifically, the new behavioral model uses design variables, which are associated with units and quantities (i.e., Mass, Length, Time, etc…). The proposed framework continues the work to allow the analysis of functional failures and fault propagation at a highly abstract system concept level before any potentially high-cost design commitments are made. The main contribution in this paper consists of developing component behavioral models based on the combination of fundamental design variables used to describe components and their units or quantities, more precisely describing components’ behavior.

This content is only available via PDF.
You do not currently have access to this content.