Models represented by polygonal meshes have been more and more widely used in CAD/CAM systems. In sheet manufacturing industries, the flattenability of a model is very important. Prior methods for processing the flattenability of a mesh surface usually employ a constrained optimization framework, which takes the positions of all its non-boundary vertices as variables in computation. For a mesh surface with hundred thousands of vertices, solving such an optimization is very time-consuming, and may exceed the capacity of main memory. In this paper, we develop a controllable evolution method to process the flattenability of a given mesh patch. It decouples the global optimization problem into a sequence of local controllable evolution steps, each of which has only one variable. Therefore, mesh surfaces with large number of vertices can be processed.

This content is only available via PDF.
You do not currently have access to this content.