We present an automated method for type and dimensional synthesis of planar linkage mechanisms. In the kinematic problem, a graph representation called initial graph is given to the parts to move. The type synthesis stage consists of an exhaustive subgraph search of the initial graph inside the graphs taken from a previously enumerated atlas of mechanisms. Each alternative resulting from the type synthesis is dimensioned using the Precision Position Method and Genetic Algorithms: the closed-chain topology is decomposed into single-open chains of two and three links programmed as dyad and triad modules; these modules are executed to compute all the significant dimensions of the linkage. Using this type and dimensional synthesis method, a fast generation and evaluation of many mechanisms can be done in few minutes using a desktop personal computer. The enumeration of mechanisms for a path following task, including eight-bar solutions, illustrates the whole design process.

This content is only available via PDF.
You do not currently have access to this content.