This paper presents an approach for velocity and acceleration analyses of lower mobility parallel manipulators. Based on the definition of the acceleration motor, the forward/inverse velocity and acceleration equations are formulated with the goal to integrate the relevant analyses under a unified framework based on the generalized Jacobian. A new Hessian matrix of serial kinematic chains (or limb) is developed in an explicit and compact form using Lie bracket. This idea is then extended to cover parallel manipulators by considering the loop closure constraints. A 3-PRS parallel manipulator with coupled translational and rotational moving capabilities is taken as example to illustrate the generality and effectiveness of this approach.

This content is only available via PDF.
You do not currently have access to this content.