A novel architecture of planar spring-loaded cable-loop-driven parallel mechanism is introduced in this paper. By attaching springs to the cable loops, two degrees of freedom can be controlled using only two actuators. In this mechanism, spools are eliminated. Therefore, it is expected that the accuracy of this mechanism is improved compared with conventional cable-driven mechanisms making use of spools. The mechanism can be actuated using either linear sliders or rotary actuators driving the motion of a cable or belt. This paper presents the inverse kinematics and the static equilibrium equations for the new architecture. It is verified that the cables and the springs can be kept in tension within the workspace. Results of numerical simulations are also given.

This content is only available via PDF.
You do not currently have access to this content.