A planar rigid-body velocity metric based on the instantaneous velocity of all particles that constitute a rigid body is developed. A measure based on the discrepancy in the translational velocity at each particle for two different planar twists is introduced. The calculation of the measure is simplified to the calculation of the product of: 1) the discrepancy in angular velocity, and 2) the average distance of the body from the instantaneous center associated with the twist discrepancy. It is shown that this measure satisfies the mathematical requirements of a metric and is physically consistent. It does not depend on either the selection of length scale or the frames used to describe the body motion. Although the metric does depend on body geometry, it can be calculated efficiently using body decomposition. An example demonstrating the application of the metric to an assembly problem is presented.

This content is only available via PDF.
You do not currently have access to this content.