This paper presents a general approach to analyze the singularities of lower-mobility parallel manipulators with parallelogram joints. Using screw theory, the concept of twist graph is introduced and the twist graphs of two types of parallelogram joints are established in order to simplify the constraint analysis of the manipulators under study. Using Grassmann-Cayley Algebra, the geometric conditions associated with the dependency of six Plu¨cker vectors of finite and infinite lines in the 3-dimensional projective space are reformulated in the superbracket in order to derive the geometric conditions for parallel singularities. The methodology is applied to three lower-mobility parallel manipulators with parallelogram joints: the Delta-linear robot, the Orthoglide robot and the H4 robot. The geometric interpretations of the singularities of these robots are given.

This content is only available via PDF.
You do not currently have access to this content.