Considerable potentials with regard to mobility in unstructured environment offer actively articulated mobile robots equipped with powered wheels or tracks. These potentials are obvious when dealing with a system’s trafficability and terrainability. However, maneuverability and steerability of articulated mobile robots are challenging. This is due to the fact that these robots represent a form of truck-trailer systems leading to interactions and influences between the individual vehicles resulting in significant problems like e.g. off-tracking with regard to a given path. Further on, when dealing with a mobile robot’s maneuverability there are only few scientific contributions covering articulated vehicles with actively powered trailers using tracks as propulsive elements. The described systems differ significantly with regard to their configuration with respect to the multi-redundant mobile robot in this work. To investigate the maneuverability of articulated tracked mobile robots a demonstrator has been developed. It is built up out of three identical modules which are connected with each other in a rowby means of a rotational and a translational degree-of-freedom. Each module has two tracks which can be powered independently. Overall, the system has got ten degrees-of-freedom whereas six of them are active and four passive. The developed demonstrator has been used for investigations dealing with maneuverability and steerability as well as modularization of the system’s control architecture. The paper summarizes the development of the mobile robot, its feedback control strategy as well as the tests carried out. The achieved results show a satisfying performance with regard to the implemented control strategy and the system’s maneuverability.

This content is only available via PDF.
You do not currently have access to this content.