This paper presents a new method (the Unrestricted Wind Farm Layout Optimization (UWFLO)) of arranging turbines in a wind farm to achieve maximum farm efficiency. The powers generated by individual turbines in a wind farm are dependent on each other, due to velocity deficits created by the wake effect. A standard analytical wake model has been used to account for the mutual influences of the turbines in a wind farm. A variable induction factor, dependent on the approaching wind velocity, estimates the velocity deficit across each turbine. Optimization is performed using a constrained Particle Swarm Optimization (PSO) algorithm. The model is validated against experimental data from a wind tunnel experiment on a scaled down wind farm. Reasonable agreement between the model and experimental results is obtained. A preliminary wind farm cost analysis is also performed to explore the effect of using turbines with different rotor diameters on the total power generation. The use of differing rotor diameters is observed to play an important role in improving the overall efficiency of a wind farm.

This content is only available via PDF.
You do not currently have access to this content.