A mesh movement algorithm suitable for aerodynamic design optimization problems is presented. It involves B-spline surface construction, projection and evaluation on B-spline faces for the surface mesh movement, as well as inverse-distance and 2D/3D TFI interpolations for the volume mesh deformation. The algorithm is fast and exhibits an excellent parallel efficiency. It is used to deform the surface and volume mesh of an ONERA-M6 wing undergoing several planform changes. The quality of the deformed mesh is preserved as long as the difference between the initial surface mesh and the B-spline surface model is small. A good agreement reported between the flow simulation results on the deformed mesh and those obtained on initial fixed mesh.
Volume Subject Area:
36th Design Automation Conference
This content is only available via PDF.
Copyright © 2010
by ASME
You do not currently have access to this content.