In this study, the natural frequencies and mode shapes of carbon nanotube (CNT) reinforced polymer composite microcantilever beams are investigated by means of a micromechanical model and the three-dimensional finite element analysis. Microcantilever beams are made of Poly vinyl chloride (PVC) and reinforced with multi-wall carbon nanotubes (MWCNTs). MWCNTs can be distributed along the length/width/thickness of the nanocomposite beam. To validate the accuracy and effectiveness of the model, a direct comparison of results is made with an analytical solution for a test case. Next, various material types of the nanocomposite microcantilever beam are introduced and the effect of different distribution patterns and the weight-percents (wt%) of MWCNTs on the first six natural frequencies and mode shapes is found.

This content is only available via PDF.
You do not currently have access to this content.