This paper presents the application of advanced optimization techniques to Unmanned Aerial Systems (UAS) Mission Path Planning System (MPPS) using Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and a Hybrid Game strategy are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The resulting trajectories on a three-dimension terrain are collision-free and are represented by using Be´zier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a Hybrid-Game strategy to a MOEA and for a MPPS.

This content is only available via PDF.
You do not currently have access to this content.