This paper examines the vibration modes of single stage helical planetary gears in three dimensions with equally spaced planets. A lumped-parameter model is formulated to obtain the equations of motion. The gears and shafts are modeled as rigid bodies with compliant bearings at arbitrary axial locations on the shafts. A translational and a tilting stiffness account for the force and moment transmission at the gear mesh interface. The modal properties generalize those of two-dimensional spur planetary gears; there are twice as many degrees of freedom and natural frequencies due to the added tilting and axial motion. All vibration modes are categorized as planet, rotational-axial, and translational-tilting modes. The modal properties are shown to hold even for configurations that are not symmetric about the gear plane, due to, for example, shaft bearings not being equidistant from the gear plane. Computational modal analysis are performed to numerically verify the findings.

This content is only available via PDF.
You do not currently have access to this content.