Innovative companies that generate a variety of products and services for satisfying customers’ specific needs are invoking and increasing research on mass-customized products, but the majority of their efforts are still focused on general consumers who are without disabilities. This research is motivated by the need to provide a basis of universal design guidelines and methods, primarily because of a lack of knowledge on disabilities in product design as well as methods for designing and evaluating products for everyone. Product family design is a way to achieve cost-effective mass customization by allowing highly differentiated products to be developed from a common platform while targeting products to distinct market segments. By extending concepts from product family design and mass customization to universal design, we propose a method for developing a universal product family to generate economical feasible design concepts and evaluating design feasibility with respect to disabilities within dynamic market environments. We will model design strategies for a universal product family as a market economy where functional module configurations are generated through market segments based on a product platform. A coalitional game is employed to model module sharing situations regarding dynamic market environments and decides which functional modules provide more benefit when in the platform based on the marginal contribution of each module. To demonstrate implementation of the proposed method, we use a case study involving a family of mobile phones.

This content is only available via PDF.
You do not currently have access to this content.