In this paper, a haptic modeling and simulation system is developed to assist handheld product design. With haptic feedback, users could create, interact and evaluate the virtual product directly and intuitively without producing the physical prototype. This saves the cost and reduces time-to-market, which is especially meaningful for the rapidly changing handheld mobile devices. To provide a comfortable and accurate operation, a virtual vibration actuator is devised to add into the touch screen. Unlike the previous research that mainly focuses on the design of the product shape, the proposed system also models the interaction between the user (finger) or tool (pen) and handheld device (button/screen). To obtain realistic simulation and replace the physical prototype, the complex shape and deformation of the finger are considered when calculating the feedback force. A computational efficient collision detection method for complex shape objects is proposed to tackle the challenge of a high update rate of more than 1 kHz for real-time realistic haptic rendering. Moreover, the proposed system incorporates the haptic modeling of vibration interaction and menu interface design into the product design simulation system. A case study of handheld device design is used to illustrate the proposed system.

This content is only available via PDF.
You do not currently have access to this content.