For obtaining correct reliability-based optimum design, an input model needs to be accurately estimated in identification of marginal and joint distribution types and quantification of their parameters. However, in most industrial applications, only limited data on input variables is available due to expensive experimental testing costs. The input model generated from the insufficient data might be inaccurate, which will lead to incorrect optimum design. In this paper, reliability-based design optimization (RBDO) with the confidence level is proposed to offset the inaccurate estimation of the input model due to limited data by using an upper bound of confidence interval of the standard deviation. Using the upper bound of the confidence interval of the standard deviation, the confidence level of the input model can be assessed to obtain the confidence level of the output performance, i.e. a desired probability of failure, through the simulation-based design. For RBDO, the estimated input model with the associated confidence level is integrated with the most probable point (MPP)-based dimension reduction method (DRM), which improves accuracy over the first order reliability method (FORM). A mathematical example and a fatigue problem are used to illustrate how the input model with confidence level yields a reliable optimum design by comparing it with the input model obtained using the estimated parameters.

This content is only available via PDF.
You do not currently have access to this content.