This work concentrates on the issue of rigid body collision detection, a critical component of any software package employed to approximate the dynamics of multibody systems with frictional contact. This paper presents a scalable collision detection algorithm designed for massively parallel computing architectures. The approach proposed is implemented on a ubiquitous Graphics Processing Unit (GPU) card and shown to achieve a 40x speedup over state-of-the art Central Processing Unit (CPU) implementations when handling multi-million object collision detection. GPUs are composed of many (on the order of hundreds) scalar processors that can simultaneously execute an operation; this strength is leveraged in the proposed algorithm. The approach can detect collisions between five million objects in less than two seconds; with newer GPUs, the capability of detecting collisions between eighty million objects in less than thirty seconds is expected. The proposed methodology is expected to have an impact on a wide range of granular flow dynamics and smoothed particle hydrodynamics applications, e.g. sand, gravel and fluid simulations, where the number of contacts can reach into the hundreds of millions.

This content is only available via PDF.
You do not currently have access to this content.