Laser launch trajectories are being developed for boosting nano- and micro-satellite sized payloads (i.e., 1 to 100 kg) using a 7-Degree Of Freedom (DOF) flight dynamics model that has been extensively calibrated against 16 actual trajectories of small scale model lightcraft flown at White Sands Missile Range, NM on a 10 kW pulsed CO2 laser called PLVTS. The full system 7-DOF model is comprised of individual aerodynamics, engine, laser beam propagation, variable vehicle inertia, reaction controls system, and dynamics models, integrated to represent all major phenomena in a consistent framework. The suborbital trajectory results presented herein are for a 240 cm diameter lightcraft (100 kg payload; 100 MW beam power) flown under three different laser-boost scenarios: 1) liftoff and vertical climb-out on a vertically oriented laser beam; 2) liftoff and climb-out along a constant laser beam pointing angle (fixed azimuth and zenith) defined relative to the launch pad; 3) liftoff and climb-out on a beam with a time-varying pointing schedule (azimuth and zenith) to “slingshot” the lightcraft laterally, making maximum use of the engine’s autonomous beam-riding feature. For simplicity, simulations assume a solid ablative rocket propellant (e.g., Teflon®-like performance) with a vacuum specific impulse of 644 seconds, momentum coupling coefficient of 190 N/MW, and overall efficiency of 60%. This flight dynamics model and associated 7-DOF code provide a physics-based predictive tool for basic research investigations into laser launched lightcraft for suborbital and orbital missions. An investigative protocol was developed to identify and quantify phenomena that dominate each phase of the launch trajectory. These protocols are specified herein, along with physics-based explanations for such phenomena, both predicted and observed.

This content is only available via PDF.
You do not currently have access to this content.