In this paper, a problem of boundary feedback stabilization of second order hyperbolic partial differential equations (PDEs) is considered. These equations serve as a model for physical phenomena such as oscillatory systems like strings and beams. The controllers are designed using a backstepping method, which has been recently developed for parabolic PDEs. With the integral transformation and boundary feedback the unstable PDE is converted into a system which is stable in sense of Lyapunov. Then taylorian expansion is used to achieve the goal of trajectory tracking. It means design a boundary controller such that output of the system follows an arbitrary map. The designs are illustrated with simulations.
This content is only available via PDF.
Copyright © 2009
by ASME
You do not currently have access to this content.