Nowadays, most of the numerical simulations are carried out by successively performing the following steps: CAD model definition or modification, conversion to a mesh model and enrichment with semantic data relative to the simulation (e.g. material behaviour laws, boundary conditions), Finite Element simulation and analysis of the results. Classically, the semantic data are attached to the mesh through the use of groups of geometric entities sharing the same characteristics. Thus, any modification of the CAD model always implies an update of the mesh as well as an update of the attached semantic data. This is time-consuming and not adapted to the context of industrial maintenance. Moreover, the CAD models do not always exist and should therefore be reconstructed starting from scratch or from the physical object. In this paper, we set up a framework towards the definition of CAD-less Finite Element analyses wherein enriched meshes are manipulated directly. The geometric manipulations are constrained with information extracted from the group definition. Actually, the boundaries of those groups are exploited to constrain the modifications. The concept of Virtual Group Boundaries is introduced to focus on the extension of the attached semantic information instead of the actual tessellation while generalising the approach to groups of any dimension going from 0D (vertex) to 3D (e.g. tetrahedron). The notion of Elementary Group is also introduced as a mean to ease the forthcoming transfer of the semantics from the initial to the modified models. Such a framework also finds interest in the preliminary design phases where alternative solutions have to be evaluated.

This content is only available via PDF.
You do not currently have access to this content.