This paper investigates wave propagation in two-dimensional nonlinear periodic structures subject to point harmonic forcing. The infinite lattice is modeled as a springmass system consisting of linear and cubic-nonlinear stiffness. The effects of nonlinearity on harmonic wave propagation are analytically predicted using a novel perturbation approach. Response is characterized by group velocity contours (derived from phase-constant contours) functionally dependent on excitation amplitude and the nonlinear stiffness coefficients. Within the pass band there is a frequency band termed the “caustic band” where the response is characterized by the appearance of low amplitude regions or “dead zones.” For a two-dimensional lattice having asymmetric nonlinearity, it is shown that these caustic bands are dependent on the excitation amplitude, unlike in corresponding linear models. The analytical predictions obtained are verified via comparisons to responses generated using a time-domain simulation of a finite two-dimensional nonlinear lattice. Lastly, the study demonstrates amplitude-dependent wave beaming in two-dimensional nonlinear periodic structures.

This content is only available via PDF.
You do not currently have access to this content.