We present a simple and cost effective approach using electrochemical impedance spectroscopy (EIS) for accurate pore size estimation of silicon based nano-pores. This method accounts for the capacitor effects of the electrical double layer and the resistor effects of the ion concentration inside the nano-channel. The nano-pore impedance was modeled as the electrolyte charge transfer resistance Rs in a series connection with a parallel ion diffusion circuit Rf with a constant phase element (CPE) that models the behaviour of the double layer. The EIS analysis that has been widely employed to measure the energy storage and dissipation properties of a physicochemical system in frequency domain was adopted to sense the impedance parameters of the nano-pore. The nano-pore size was then estimated based on the impedance parameters. The accuracy of the estimated nano-pore size was verified by the TEM image.

This content is only available via PDF.
You do not currently have access to this content.