The conceptual design of a perfusion reactor is the subject of this paper. The main objective of the reactor is the provision of nutrients to living cells grown in a porous medium fabricated of a given ceramic foam. In order to increase reactor throughput, the nutrients should be provided in a minimum time, without affecting the cell life. Various layouts of identical ceramic-foam pieces hosting the cells are proposed, the purpose being to select the variant with the highest likelihood of optimum performance, in the absence of a detailed mathematical model. A simple model is proposed, drawn from the discipline of hydraulic dynamical systems, which leads to a flow-complexity measure. The variant with the lowest complexity is then selected, for which a possible embodiment is proposed.

This content is only available via PDF.
You do not currently have access to this content.