Fine porcelain products get their peculiar characteristics at the end of their thermal process. During the firing, the product is subjected to shrinkage and a considerable amount of the material mass becomes viscous, causing the product shape to be modified due to the own object weight. As the final object shape is a relevant characteristic for both usability and aesthetics of the commercial product, the activity purpose was to devise a methodology to automatically detect the raw product shape required to match a provided final geometry. Such a methodology has been implemented by means of commercial CAD/FEM tools and should be used in porcelain products design. The research consists of three parts. During the first one an extensive experimental campaign has been carried out in order to model the behavior of the heat treated material; by using the experimental data a numerical model of the material behavior has been built. In the second part the model reliability has been tested by means of a set of FE analysis. Such an analysis simulates the effects of stresses caused by the real industrial firing process. In the end, during the third part, inverse firing process FE simulations have been performed. These simulations will allow the designer to know the raw-product geometry, in order to obtain the expected finished product.

This content is only available via PDF.
You do not currently have access to this content.