A pseudo-rigid-body model (PRBM) which describes a class of curved compliant beams in terms of spherical mechanism kinematics was developed. The topology of the spherical compliant segment and its rigid-body equivalent were chosen to be analogous to planar models. The nomenclature for the spherical PRBM was also chosen to facilitate comparison with planar models. The motion of the compliant segment was calculated Finite Element Analysis and the PRBM parameters were determined. The characteristic radius and parametric angle coefficient were found to decrease as the angle subtended by the beam increases. The kinematic and elastic parameterization limits of the model increase with increasing beam angle. The stiffness of the beam is described by two separate spring elements, which describe the appropriate combination of moment and force which produces spherical motion. A previous planar PRBM is shown to be the small angle limit of the new spherical PRBM.

This content is only available via PDF.
You do not currently have access to this content.