This paper proposes a multi-stage design method for a design of practical compliant mechanisms. The proposed method consists of topology and shape optimizations and a shape conversion method that incorporates two optimizations. In the 1st stage, an initial and conceptual compliant mechanism is created by topology optimization. In the 2nd stage, an initial model of shape optimization is created from the result of topology optimization by the shape conversion method based on the level set method. In the 3rd stage, the shape optimization yields a detailed shape of the compliant mechanism by considering non-linear deformation and stress concentration. Execution of the shape optimization after the topology optimization enables evaluation of stress concentration and large deformation effect that are normally difficult for the traditional topology optimization. On the other side, the precise conversion from the model by topology optimization to the one for the shape optimization becomes possible by the shape conversion method that is utilizing the level set method. Using the proposed multi-stage method, a practical compliant mechanism can be designed with the designer’s minimum efforts that are indications of design conditions of the topology and shape optimizations and several parameters and threshold values of the shape conversion method.

This content is only available via PDF.
You do not currently have access to this content.