This paper presents a new approach to designing continuum compliant mechanisms—the kinetoelastic approach. We present a new formulation of the design problem, incorporating not only the kinematic function requirements of the mechanism but, more importantly, the compliance characteristics of the mechanism’s structure. In our kinetoelastic model, the kinematics of the compliant mechanism is defined on rigid-bodies of input/output ports and is related to a set of kinetoelastic factors of mechanism’s structure in a state equation of the mechanism defined by the elasticity theory. Central to defining the compliance characteristics of the mechanism is the mechanism eigensystem with principal eigen-stiffness or eigen-compliance. In this new perspective, we further apply the kinetoelastic model to the problem of designing compliant translational joints with a structure topology optimization technique. This application demonstrates the capability of the kinetoelastic approach in producing compliant designs with desirable compliance properties, such as in the leaf-spring type sliding joint as opposed to the notch-type joint. The paper represents an initial development towards a complete methodology for continuum compliant mechanism design.

This content is only available via PDF.
You do not currently have access to this content.