This paper introduces a reconfigurable closed-loop spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of non-circular gears into a six degree-of–freedom closed-loop spatial chain. The gear pairs are designed based on given mechanism parameters and a user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, ..., and the eleventh is parallel to the twelfth. This paper presents the synthesis of the gear pairs that satisfy a specified three-dimensional position and orientation need. Numerical approximations were used in the synthesis the non-circular gear pairs by introducing an auxiliary monotonic parameter associated to each end-effector position to parameterize the motion needs. The findings are supported by a computer animation. No previous known literature incorporates planar non-circular gears to fulfill spatial motion generation needs.

This content is only available via PDF.
You do not currently have access to this content.